Mémo \(\LaTeX\)
Comment afficher une formule \(\LaTeX\) dans une cellule Markdown d'un notebook Jupyter ?
Info
Les affichages sont obtenus en saisissant la syntaxe précisée entre deux symboles $ dans une cellule au format Markdown.
Symboles courants
| syntaxe | affichage |
|---|---|
| \times | \(\times\) |
| \approx, \neq | \(\approx, \neq\) |
| \leqslant,\geqslant | \(\leqslant,\geqslant\) |
| \sqrt{x} | \(\sqrt{x}\) |
| \in, \notin | \(\in, \notin\) |
| \subset, \not \subset | \(\subset, \not \subset\) |
| \emptyset | \(\emptyset\) |
| \cap | \(\cap\) |
| \cup | \(\cup\) |
| \infty | \(\infty\) |
| \Bbb{N}, \Bbb{R} | \(\Bbb{N, R}\) |
| \alpha, \beta | \(\alpha, \beta\) |
| \pi | \(\pi\) |
| \sigma | \(\sigma\) |
| \perp | \(\perp\) |
| \dots, \cdots | \(\dots, \cdots\) |
Indices, exposants
| syntaxe | affichage |
|---|---|
| u_n | \(u_n\) |
| u_{n+1} | \(u_{n+1}\) |
| 2^3 | \(2^3\) |
| 2^{n+1} | \(2^{n+1}\) |
| {2^3 }^4 | \({2^3}^4\) |
| \sqrt[3]{8} | \(\sqrt[3]{8}\) |
Fractions
| syntaxe | affichage |
|---|---|
| \dfrac{a+1}{b+1} | \(\dfrac{a+1}{b+1}\) |
| \dfrac{\frac{a}{b}+1}{\frac{c}{d}+1} | \(\dfrac{\frac{a}{b}+1}{\frac{c}{d}+1}\) |
Flèches
| syntaxe | affichage |
|---|---|
| \Leftrightarrow | \(\Leftrightarrow\) |
| \leftrightarrows | \(\leftrightarrows\) |
| \Longleftrightarrow | \(\Longleftrightarrow\) |
| \iff | \(\iff\) |
| \Rightarrow | \(\Rightarrow\) |
| \rightarrow | \(\rightarrow\) |
| \to | \(\to\) |
| \Longrightarrow | \(\Longrightarrow\) |
| \implies | \(\implies\) |
| \Leftarrow | \(\Leftarrow\) |
| \leftarrow | \(\leftarrow\) |
| \mapsto | \(\mapsto\) |
| \longmapsto | \(\longmapsto\) |
| \uparrow, \downarrow | \(\uparrow, \downarrow\) |
| \nearrow,\searrow | \(\nearrow,\searrow\) |
Vecteur, angle, etc.
| syntaxe | affichage |
|---|---|
| \overrightarrow{AB} | \(\overrightarrow{AB}\) |
| \vec{u} | \(\vec{u}\) |
| (O,\vec{\imath},\vec{\jmath}) | \((O, \vec{\imath},\vec{\jmath})\) |
| \widehat{ABC} | \(\widehat{ABC}\) |
| \hat{a} | \(\hat{a}\) |
| \overline{A} | \(\overline{A}\) |
Coordonnées, matrice, coefficient binomial, etc.
| syntaxe | affichage |
|---|---|
| \binom n k | \(\binom n k\) |
| \dbinom n k | \(\dbinom n k\) |
| \begin{pmatrix} a \\ b \end{pmatrix} |
\(\begin{pmatrix} a \\ b \end{pmatrix}\) |
| \begin{matrix} a & b \\ c & d \end{matrix} |
\(\begin{matrix} a & b \\ c & d \end{matrix}\) |
| \begin{bmatrix} a & b \\ c & d \end{bmatrix} |
\(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) |
Sommes, intégrales, limites
| syntaxe | affichage |
|---|---|
| \sum _{k=1}^{n}k | \(\sum _{k=1}^{n}k\) |
| \int _{1}^{n}f(x) \mathrm{d} x | \(\int _{1}^{n}f(x)\,\mathrm{d}x\) |
| \lim_{n \to +\infty}x_n=\ell | \(\lim_{n \to +\infty}x_n=\ell\) |
| \lim\limits_{x \to -\infty} f(x) | \(\lim\limits_{x \to -\infty} f(x)\) |
| \lim\limits_{\substack{x \to 0 \ x<0}} \dfrac{1}{x} | \(\lim\limits_{\substack{x \to 0 \\ x<0}} \dfrac{1}{x}\) |
En mode display, ($$ formule $$), \sum _{k=1}^{n}k s'affiche :
\[ \sum _{k=1}^{n}k\]
et \int _{1}^{n}f(x)\,\mathrm{d}x s'affiche :
\[ \int _{1}^{n}f(x)\,\mathrm{d}x\]
Délimiteurs
| syntaxe | affichage |
|---|---|
| \cos\left(\dfrac{\pi}{6}\right) | \(\cos\left(\dfrac{\pi}{6}\right)\) |
| \left\vert x-3 \right \vert | \(\left\vert x-3 \right \vert\) |
| \left \| u-v \right \| | \(\left\| u-v \right \|\) |
| \left( \dfrac{1}{2} +2(x + 1) \right) | \(\left( \dfrac{1}{2} +2(x + 1) \right)\) |
| \left {\begin{array}{rcl} x + y & = & a \\ x - y & = & b \end{array} \right. |
\(\left \{\begin{array}{rcl} x+y&=&a \\ x-y&=&b \end{array} \right.\) |